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ON THE STABILITY OF UNSTEADY MOTIONS* 

A.I. IL'IN 

A generalization of the fundamental Lyapunov and Chetayev theorems In which 
the requirement of the existence of an infinitely small upper limit for 
the Lyapunov function is relaxed,is presented. The generalized theorems 
pxove that it is sufficient for Lyapunov's function either to admit of 
the infinitely small upper limit, or to be bounded with respect to time t 
in certain time intervals ti for which the condition X$-+00 holds as t-m. 

6 

Theorems on stability and instability are formulated to a first approxi- 
mation. The application of the theorems is illustrated by the example of 
the stability of a second-order system, with the construction of a Lyapunov 
generalized function. 

1. The theory of stability in the second Lyapunov method has recently been fairly widely 
developed, and the Lyapunov theorems have been generalized, but in all the theorems and their 
generalizations, see /l-7/, the requirement of the existence of an infinitely small upper 
limit of the Lyapunov function remains unchanged. However, this requirement is very severe, 
and it can be relaxed. Consider the following equations of the perturbed motion: 

dqldt = f, (t, x), (x = (;~l, . . ., qJ) (a = 1, . . .s n) ,(i.i) 
AS regards the right-hand sides of these equations , we will assume that in the domain 

1% I < 8, t>to>o WI 

tiey are continuous and admit of the existence of a unique solution for the specified initial 
conditions, and that the conditions f, (t,O) =0 are satisfied; here e is a positive constant. 
In the same domain we shall consider functions V(t, x) which, we assume, have continuous 
partial derivatives and vanish when x =O. 

Let us introduce the following definitions. 

Definition 1. We shall describe the function V(t,x) as positive definite (negative 
definite) in the broad sense if in the domain [z, I<8 as small as desired, and for t as 
large as desired (say tE T,) there exist the time intervals t,,lisuch that in #em the function 
v satisfies the condition B > W(x), (V< -w(x)) here W is a positive definite function 
independent of t. In the same domain Ix, I< e; and for tE T, time intervals G can exist 
in which the function v satisfies the condition V(t, x)> 0, (V<O). The intervals t,liand tc2’ 
occupy T, totally. 

Definition 2. We shall describe the function V&x) as a function which conditionally 
admits of an infinitely small bound if in the domain I % I<er as small as desired, and for 
tE T,, time intervals t.481 existinwhich the function V tends to zero as 1x1+0 uniformly 
in t. In the same domain lx, I< e and for tE T, time intervals Ed* can exist in which 
the function V may not admit of an infinitely small upper limit. The time intervals t"s* and 

t$ occupy the whole of T,. 

2. Taking into account the above definitions, we can formulate the following generafiza- 
tions of the basic Lyapunov theorems. 

Theorem 1 (on the asymptotic stability). Suppose that for the differential equations of 
perturbed motion one can find a fixed-sign function V (t,x) which admits of an infintely 
small upper bound, and whose total derivative dV/dt, compiled on the strength of Eq.(l.l), is 
a function of fixed sign in the broad sense, opposite to that of V. If at the same time 

Z$&-+ OQ as t+ m and all the intervals t& are fully contained in tdi, then the unperturbed 

motion is asymptotically stable. 

Proof. Assume that V(t, x) is a positive definite function; then in the domain (1.2) 
the inequality 

‘v Q, x1 > w (x1 (2.1) 
holds. Here W is a certain negative definite function independent of t. 

Noreover, if in the same domain dV/dt there is a negative definite function in the broad 
snese, then 
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dVldt < W, (x), t E t&; dVldt < 0, t E t:, (2.2) 
where Wiis a certain positive-definite function independent of t. 

We shall regard the quantities z, as time functions which satisfy the differential equa- 
tions of the perturbed motion (l.l), assuming that the initial values of z,(k) satisfy 
conditions (1.2). Since an unperturbed motion is steady in any case, the quantity 8 can be 
chosen to be so small that for all t>to>O the quantities 2, remain in the domain (1.2). 
But then the derivative dV/dt will be non-positive , and consequently when t increases without 
limit the function V will tena to a certain limit, all the time remaining greater than this 
limit. 

We shall show that the limit in question equals zero. Let us assume the opposite, namely 
that the limit equals a certain positive quantity a# 0, that is the inequality 

V 0, x) > a (2.3) 
holds for all t>b>O. 

However, since in the intervals t& the function V admits of an infinitely small upper 
limit, the inequality 

X (t) = max {I q 0) I, . . ., 12, 0) I) > h, t fE th (3.4) 
where li is a certain fairly small positive number, will be satisfied. 

But if the above inequality is satisfied for tE t&, so is the inequality 

dVldt < -1, t E &; dVldt < 0, t E tts 

where 1 is a positive number different from zero , which is the exact lower limit of the 
function dVldt when tE &, andwhen condition (2.3) is satisfied. 

Therefore, for all t>to>0 

t 
v (6 x) = v (to, x0) + $ (t, x) dt < V (to, x0) - lx t& 

f 

i.e. as t+oo the right-hand side tends to -co. This contradicts (2.3)) hence 

lim V (t* x) = 0 
t-CV 

Consequently, this holds forthefunction W(x)as well; then 

lim X (t) = Fz max {I 2, (t) 1. . . ., I G (t) I} = 0 
l-cm 

which proves the theorem. 

Theorem 2 (on instability). Suppose that a function V(t,x) exists which admits of an 
infinitely small upper limit, and that its time derivative compiled on the strength of the 
equations of perturbed motion is a function with a fixed sign in the broad sense. The function 
V itself can, for values of 2n as small as desired, and for values of t as large as desired, 
take values of the same sign as that of the derivative. If at the same time x&+00 as 

t+m, and td* contain all intervals &, then the undisturbed motion is unkable. 

Proof. We assume that dVldt is positive definite in the broad sense, that is in the 
domain (1.2) the equations 

dvldt > W, (x), t E &I; WI& > 0.t E d., (3.5) 
where W,(x) is a positive definite function independent of t, hold. 

Let us consider the solution 2, =2,(t) of the equations of motion for which the initial 
values 2,” -2,(b) are chosen from the condition 

Ix.” I < rlr v 00, x”)>O 
where n is a fairly small positive number. 

We shall show that this solution will certainly at some instant of time leave the domain 
(1.2). Let US assume that the solution all the time remains in this domain. On the basis of 
(2.5) the derivative of the function V is in any case negative, therefore 

V (k x) a V (to, x0) (3.6) 
However, if condition (2.6) is satisfied, and in the intervals fE 4, the function V 

admits of an 

where X is a 
Then it 

infinitely small upper limit, the inequality 

X 0) = mar {I s1 (t) I, . . ., I % 0) II > a, t E 41 
fairly small positive number, holds. 
follows from (2.5) that 

dVldt $-+ I, t E t& 

(2.7) 

(2.8) 

where 1 is a positive number different from zero , which is the lower limit of the function 
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WI& when t E 41, and (2.7) holds. 
Taking into account condition (2.81, we obtain 

v (t, x) = v (to, x0) + j: g- (t, x) dt > v (to, x0) + z z d-l 
t. i 

However, satisfaction of (2.9) is impossible since the function V, which conditionally 
admits of an infinitely small upper limit when t E t;., , is at least limited, and the right- 
hand side of (2.9) tends to infinity as t+oo 

It follows from this contradiction that the solution z8 = s,(t) will certainly at some 
instant of time leave the domain (1.2) which is independent of the initial values, and since 
these'values are as small as desired, the unperturbed motion is unstable. 

To generalize the Chetayev theorem on instability, we shall consider the neighbourhood 
of the origin of coordinates for the space of variables xl, . . . . x,,~ bounded by the surface 
V =0 in which the function V takes positive values. We shall refer to this neighbourhood 
as the domain V>O. Let us assume that the function Vhas the following properties. 

lo. For t as large as desired , and in a neighbourhood of the origin as small as desired, 
a domain V>O exists. 

20. In the domain V>O, for t,,i the function V is bounded, and for t,: it can also 
be unbounded. 

3O. In 

where a is a 

where 1 is a 

the domain v>o, for all t and x connected by the relation 

V (1, x) > a 

positive number as small as desired, the inequality 

dV/dt > 1, t E &I; dVldt > 0, t E &, 
certain positive number depending on a,is satisfied. 

(2.10) 

(2.11) 

Theorem 3 (on instability). If for the differential functions of perturbed motion there - 1 
is a function which satisfies Conditions lo- 3O, and ~i$l+w as t+w, then the unperturbed 

i 
motion is unstable. 

Proof. Let us set a fairly small neighbourhood of the origin, which contains the domain 
v>o. Consider the solution x, =x,(t) of the equation of perturbed motion with the initial 
values x8"= x(to) numerically selected as small as desired such that V (to, x0) > a.. 

For V>a, the derivative dVldt is non-negative, therefore the function V(t,x(t)) is 
non-decreasing and, consequently, the quantities xS(t) remain in the domain V>a, at least 
as long as inequality (1.2) remains true. 

We assume that (1.2) is never violated, but for t >to the condition 

V 0, x 0)) > v (to, x") 

is satisfied since dVldt at any rate, non-negative, Hence it follows that 

dVldt > 1, t E $1; dVidt > 0, t E &, 

We then obtain 

v (&x(t)) > v (tO,xe) + 2 F"Z.1 

But this is impossible because inthedomain tEt& the function V is bounded. 
Thus, at some instant of time the solution will certainly leave the domain (1.2), and 

since the quantities x8 (to) can be taken as small as desired, the unperturbed motion is un- 
stable. 

Considering the theorems above , we can generalize the theorems on stability and instability 
to a first approximation. Consider the system 

dx,/dt = *$I pis (t) xi + 6, (t, 4 (s = 1, . . . t 4 

where pi, are arbitrary, continuous and bounded time functions when t> to>Oc and 6, are func- 
tions which in the domain (1.2) satisfy the inequalities 

I v. (t,x) I Q A j, xi’ (2.13) 

(A is a positive constant). 
Consider, together with (2.12), the first-approximation system, 

(2.14) 
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Among the Lyapunov functions we shall investigate the quadratic forms of the variables Xl,..., 
%, of the form n ,. 

v=cP(t) X Qj(t)xfxj 
3. +-1 

(2.15) 

Here ail(t) are arbitrary and continuous time functions bounded for t> t,>O, and cp(t) 
is a continuous, fixed-sign and semibounded time function; i.e. it is bounded for 
may be unbounded for fvki- 

t,,i, and 

Theorem 4. Suppose that for the set of Eqs.(2.l4)of the first-approximation one can 
find a fixed-sign quadratic form of type (2.15) for which the time derivative dV/dt, hon- 
strutted on the strength of Eqs.(2.14),is the qudratic fixed-sign form of sign opposite to 
that of V, 

n 

g = cpw c hj tt) "isj 
,i-1 

(2.16) 

where b,,(t) are continuous time functions bounded for t>to>O. If, in addition, 

00 is satisfied for the function q(t) as t+oo, then the unperturbed motion for Eqs.(2.12) 
is asymptotically stable for any choice of the functions t?, which satisfy inequalities (2.13). 

Proof. We assume that the function V is positive definite. On the strength of Eqs.(2.12) 
the total derivative of this function can be expressed as 

$ = up (t) [ 2 bij (t) SiXj + u] i. I=1 

(2.17) 

Taking (2.12) and (2.17) into account we have 

11 

lJ,= c ai j8 0) qb&B$,Xj’, (2.18) 
i. j. *=I -1 

(here B is a positive constant). 
The expansion of the function u starts with terms of order no less than the third; 

therefore function (2.17) is negative definite irrespective of the choice of the function 6,. 
Therefore, the function V satisfies all the conditions of the generalized Theorem 1, and the 
unperturbed motion of system (2.12) is asymptotically stable. 

Theorem 5. Suppose that for the system of Eqs.(2.14)to a first approximation one can 
find a quadratic form (2.15) for which the time derivative dV/dt, compiled on the strength 
of (2.14), is a fixed-sign quadratic form, and can be expressed as (2.16). The quadratic 
form (2.15) can take the value of the same sign as that of the derivative. 
for the function q(t) g&-cm is satisfied as t+m, 

If, in addition, 
then the unperturbed motion for Eq. 

(2.12) is unstable for any choice of functions es which satisfy inequalities (2.13). 

Proof. The total derivative of the function V for system (2.12) can be written in the 
form (2.17). The derivative is of fixed sign, and regarding the sign it agrees with (2.16) 
because conditions (2.18) are satisfied, and the function V itself may take the values of 
the same sign as the derivative. Consequently, the function V satisfies all the conditions 
of the generalized Theorem 2, and the undisturbed motion of system (2.12) is unstable. 

3. As an example of the application of the generalized theorems, we shall consider the 
second-order system introduced by Perron, /8/, and discussed in /3/, 

2' = -a.z + 'p1 (k I, u) (3.1) 
y' = lsinln (t+ 1)+ cosln (t+ 1) - 201 y + 0, (t, 2, v) 

where a> 0.5: the functions 'pl (t. I, g), ‘p* (t .z,u) satisfy the conditions 

I cpi (f, G v) I -G A (za + 13 (i = 1, 2) 
For the first-approximation system 

I+ = _a, g'= Isin In (t + 1) + co9 In (t + I) - 2aI y 
one can construct the function 

(3.2) 

(3.3) 

V = 9 + y*/2a - 1 exp (2 (t + 1) [1 - sin in (t + 1))). (3.4) 
which conditionally admits of an infinitely small upper limit. The total derivative of this 
function, 

dV/dt = - 2~2' - Dy*erp (2 (t + 1) [i - sin in (t + I)]) (3.5) 

is negative definite, i.e., the conditions of Theorem 1 are satisfied. Consequently, the 
unperturbed motion of system (3.3) is asymptotically stable. 

However, in constructing function (3.4), the conditions of Theorem 4 were not taken into 
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account. For this reason we can say nothing about the nature of the unperturbed motion of 
system (3.1) because the function (3.4) cannot any longer be taken as a Lyapunov function of 
system (3.l.). For example, if we assume that 

'PI = II', 'pa = 0 (3.6) 
then the total derivative for function (3.4) I compiled on the strength of system (3.1), taking 
into account (3.6), 

dVld1 = -2az'- 12y= - 2&/2a - 11 exp (2 (t + 1) 11 - ain lo (t+l)l} (3.7) 

is alternating for sufficiently large t. 
We can construct for system (3.1) a Lyapunov function which satisfies the conditions of 

Theorem 4 in the form 

P** (t'f P')F(t), F(I)= erp,. 
s 
y(t) dt 

‘r 

Za-h, 2a<2u-8inln(t+i)-conla(t+i) 
P(t)= 2[2u-sinln(t+i)-casln(t+i)]-&, 

I 2r>2u-ainln(t~1)-~oosn(t fi) 

(here S, and 8, are small positive numbers), 
On the strength of system (3.1), the total derivative can be written as 

dV 
-=-((24--y)i+[4a--2sinIP(t+~)-2c~In(t+l) -v]Pa+ 

dt 

2Z~~+2Y~3r(t)~-~~~~~fY~)+~~I+“I+lY~II~~(t) 

where B is a certain constant, and 8 is less than b1 or 6, 
To satisfy the conditions of Theorem 4, we must find a coefficient a such that the function 

F (i) is semibounded for t>t,>o When determining this coefficient there is no need to 
calculate the function F(t) in the interval t,,-00, and it is sufficient to find the function 
in the interval t,- tO+erp 2n, where t0 is chosen from the condition 

sin In (t + i) + Ccl8 ln(t+ i) = 2s 
In this case we can show that if 

r (tP f ps) > 0. then also F(m)>0 (2.9) 
and if 

r (to + W c 0, then also F(m) <5 (3.10) 

However, if condition (3.9) is satisfied we can always find a conditionally admissible 
infinitely small upper limit of Lyapunov's function (3.8) and, consequently, satisfy the 
conditions of Theorem 4. 

Thus, when conditions (3.9) is satisfied, which, as approximate calculations show, holds 
at least for aa0.574 (for Q GO.573 conditions (3.9) already cease to be satisfied); the 
unperturbed motion of the complete system (3.1) will also be asymptotically stable for any 
choice of the functions P1(tr~,&~n(f,x,y), which satisfy condition (3.2), all the conditions of 
Theorem 4 being satisfied. 

If we turn to the Persidskii criterion, see /9/, satisfaction of the inequalities 

Xij (t. ts) < S srP Ie (t - Ql (3.11) 

is necessary. Here ~+~(t,t,) is the fundamental system of solutions (3.3), and B and OL are 
positive constants independent of to, From the approximate estimate of expression (3.11) 
written for Eqs.(3.3),that is from the expressions 

P (t, to) = exp l(f + i) sin la (t + 1) - 24t - (to + 1) sin ln (to + i) + WJ 
for 2nQ 1.39, t + i = exp (2nm + n/3), t, + i = exp (2xn + n/6) we have 

Y (I, 20) d erP 10.005 sxp (2nm + ni6)] (3.12) 

This means that the Persidskii conditions are not satisfied since as m increases the right- 
hand side of (3.12) increases without limit. Consequently, for 2ae; 1.39 the equivalent 
theorems of Malkin and Perron (see /3, S/) will be invalid. Also, the Lyapunov criterion is 
not satisfied since system (3.1) is incorrect. The conditions of MaLkin's theorem can be 
satisfied for 2a>fl since it is sufficient to take the Lyapunov function v = '/o (sl + #*) 
whose total derivative is 

dV/dt = - az* + [sin In (t + 1) + cosln (t + 1) - 201 yp 

Thus, the use of the generalized theorems enables wider boundaries of the stability domain 
of hnsteady motions to be found and, therefore, enables certain stability problems of such 
motions, whichwere outside the scope of previously-known theorems to be solved. 
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NON-LOCAL CRITERIA FOR THE EXISTENCE AND STABILITY OF PERIODIC 
OSCILLATIONS IN AUTONOMOUS HAMILTONIAN SYSTEMS* 

A.A. ZEVIN 

The conditions under which single-parameter families of periodic solutions 
(the existence in a sufficiently small neighbourhood of the origin of 
coordinates follows from the Lyapunov theorem (see /l/j) can be continued 
in a parameter to the boundary of the given domain, in particular to a 
certain isoenergetic surface, are found. These conditions, which can be 
verified by the use of the Hessian of a Hamilton function, also ensure 
the orbital stability of solutions to a first approximation. Bilateral 
estimates of the oscillation periods are obtained, and it is established 
that any solution with a period which satisfies such an estimate belongs 
to the corresponding family. As an example, the non-linear oscillations 
of a string with lumped masses are examined. 

The well-known non-local results relevant to the periodic oscillations 
of autonomous Hamiltonian systems are, as a rule, theorems on the existence 
of periodic solutions (see reviews /2--4/j. One group of papers establishes 
the existence of periodic solutions with a specified value of the Hamiltonian, 
and other papers, establish solutions with a specified period; in the 
first case assumptions and made regarding the form of the corresponding 
constant energy surface; and in the second assumptions are made regarding 
the behaviour of the Hamiltonian in the vicinity of the equilibrium 
configuration and at infinity. The majority of the results were obtained 
by-variational methods, the desired periodic solutions being identified 
with the stationary points of certain functionals. The discussion in the 
present paper is based on other concepts. 

1. Consider the system. 

. dH . 
X‘ =- 

aH 

%+n ’ xi+n = - % * L=l,...,n 

where xl,...,x,, and x,,+l,...,~l,, are the generalized coordinates and momenta,and H(xl, . . . . x2,,) 
is the Hamiltonian function, doubly differentiable with respect to x1. 

Let x0 (t) = (2: (t),. ..,h’(t))’ be a periodic solution of system (1.1) with period To (here 
the prime denotes transposition). The corresponding variational equation is 

JY' = 40 0)Y (1.2) 

where I,, denotes the unit matrix of order n. 
We will recall some well-known facts. System (1.1) admits of the integral 

H (51 0), * * .I X% (t)) = const, 
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